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ASSIGNMENT 4

Reading:
105 Notes 6.1-6.2, 3.1-3.3
Hand & Finch 3.1-3.3

1.
Generalize the Euler equation

d

dt

∂L
∂ẏ

=
∂L
∂y

to the case in which L is a function of t, y, ẏ,
and ÿ. Derive the new Euler equation for this
case. Assume that y(t1), y(t2), and ẏ(t1), ẏ(t2)
are not varied, i.e. both the value and the slope
of y are fixed at each endpoint.
[Hint: Compared to the derivation of the usual
Euler equation, when you calculate the variation
of the action J with the parameter α, you will
have an extra term in the integrand. Integrate
that term by parts twice.]

2.
A bead moves in a constant gravitational field
a = x̂g with an initial velocity |v| = v0, where g
and v0 are positive constants. It is constrained
to slide along a frictionless wire which has an un-
known shape y(x). (Notice that x̂ points down
and ŷ points to the right in this problem.)
(a)
Show that the shape y(x) which minimizes the
bead’s transit time between two fixed points
(0, 0) and (X,Y ) is given by a set of parametric
equations

x = x0 + a(1 − cosφ)
y = y0 + b(φ− sinφ) ,

where φ is the parameter. This is the famous
brachistochrone problem. The solution is a cy-
cloid – the path of a dot painted on a rolling
wheel.
(b)
In terms of v0, g, X, and Y , what are the values
of the constants x0, y0, a, and b which yield the

optimal trajectory? Give definite answers where
you can; otherwise provide equations which, if
solved, would yield those values. [Hint: see Hand
& Finch, problems 2.9 and 2.10.]

3.
Starting from a vertical position at rest, a solid
ball resting on top of a thin rod falls off.

While in contact with the rod, the ball rolls
without slipping. Using the method of Lagrange
undetermined multipliers, find the angle ψ at
which the ball leaves the rod (ψ ≡ 0 initially).

4.
Consider a simple, plane pendulum consisting
of a mass m attached to a string of length l.
Only small oscillations need be considered. Af-
ter the pendulum is set into motion, the length
of the string is shortened at a constant rate
dl/dt = −α, where α > 0. (The string is pulled
through a small hole located at a constant posi-
tion, so the pendulum’s suspension point remains
fixed.) Compute the Lagrangian and Hamilto-
nian functions. Compare the Hamiltonian and
the total energy of the pendulum, and discuss
the conservation of energy for the system.



5.
A particle of mass m and velocity v1 leaves a
semi-infinite space z < 0, where the potential en-
ergy is a constant U1, and enters the remaining
space z > 0, where the potential is a constant
U2.
(a)
Use symmetry arguments to find two constants
of the motion.
(b)
Use these two constants to obtain the new ve-
locity v2.

6.
The Lagrangian for a (physically interesting)
system is

L(ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, t) = 1
2I(ϕ̇

2 sin2 θ + θ̇2)+

+ 1
2I3(ϕ̇ cos θ + ψ̇)2 −mgh cos θ ,

where (ϕ, θ, ψ) are Euler angles and (I, I3,mgh)
are constants.
(a)
Find two cyclic coordinates and obtain the two
corresponding conserved canonically conjugate
momenta.
(b)
Find a third constant of the motion.
(c)
Using the results of (a) and (b), express θ̇2 as a
function only of θ and constants.

7.
The interaction Lagrangian for a system consist-
ing of a relativistic test particle of mass m and
charge e moving in a static electromagnetic field
is

L(x,v, t) = −mc2
√

1 − v2

c2
+ ev ·A− eφ ,

where x is the particle’s position, v is its velocity,
φ(x) is the electrostatic potential (E = −∇φ),
A is the (static) magnetic vector potential
(B = ∇×A), and c is the speed of light.

(a)
Write down the canonical momenta (p1, p2, p3)
which are conjugate to the Cartesian coordinates

(x1, x2, x3).
(b)
Compute the Hamiltonian H(x,v, t).
(c)
Re-express H(x,v, t) as the function H(x,p, t).
(d)
Show that H is conserved. Is it equal to

E =
mc2√
1 − v2

c2

,

the total (relativistic) energy of the test particle?
Explain.

8.
Consider f and g to be any two continuous func-
tions of the generalized coordinates qi and canon-
ically conjugate momenta pi, as well as time:

f = f(qi, pi, t)
g = g(qi, pi, t) .

The Poisson bracket of f and g is defined by

[f, g] ≡ ∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
,

where summation over i is implied. Prove the
following properties of the Poisson bracket:
(a)

df

dt
= [f,H] +

∂f

∂t
(b)

q̇i = [qi,H]

(c)
ṗi = [pi,H]

(d)
[pi, pj ] = 0

(e)
[qi, qj ] = 0

(f)
[qi, pj ] = δij ,

where H is the Hamiltonian. If the Poisson
bracket of two quantities is equal to unity, the
quantities are said to be canonically conjugate.
On the other hand, if the Poisson bracket van-
ishes, the quantities are said to commute.
(g)
Show that any quantity that does not depend
explicitly on the time and that commutes with
the Hamiltonian is a constant of the motion.


